

Study Spot Finder

Perla Del Castillo, Maria Ines Herbas Gutierrez, Andrew Kwong, and Darwin Motato
Dept.of Electrical Engineering and Computer Engineering

University of Central Florida
Orlando, Florida, United States

Abstract — As college students, we sometimes find ourselves
struggling to find a study space. At the University of Central
Florida, we might have it a bit harder due to the large number
of students on campus and how far apart study spaces are from
each other. This ends up wasting valuable study time, gives us
frustration, and even can ruin a perfect day for studying.

Our solution is an interconnected network of hardware devices
attached to study tables that allow users to find out which spots
are available. These devices can be attached to different study
tables in different buildings around campus. This device has an
app that students can download to reserve a spot as well as view
all available spots. The device has lights that represent different
states such as: available in green, awaiting confirmation in
yellow, and taken in red, in order to easily communicate its
status to students. The user can easily find available spots on the
app, tentatively reserve it, and lastly confirm by inputting a
keycode. We believe this solution makes finding a study spot a
breeze and we hope that students spend more time studying than
trying to find where to study.

I. INTRODUCTION
Everyday students lose valuable time looking for a

place where they can sit down and study for their classes.
They will waste precious hours over the course of their entire
education searching multiple floors and countless buildings
for that perfect desk, the one with a comfy chair, a nearby
outlet, etc. Instead they turn away, disappointed to find that
their spot has already been taken. This process repeats again
and again for many students - that wasted time could be
utilized for additional studying time for that student’s
upcoming exam, or for preparation time before studying (e.g.
getting food, water, materials)

Our team is proposing a reservation system for study
spaces that will be easily scalable and accessible to all
students. It streamlines the process of finding a proper space
and instead allows the user to focus their time more on what
matters: their education. Using a combination of a hardware
device and a mobile app, students can locate their preferred
spot with their desired amenities, reserve it, and arrive to find
their spot reserved and ready for their use.

This project was inspired by countless first and
secondhand experiences. On far too many occasions we
found ourselves searching floor after floor for spaces to
accommodate our needs, subtracting valuable time from our
studying experience. We want to eliminate this useless,
ancient process of trial and error and bring it to the 21st
century, as so many things have been. More importantly, we
want to improve the experience of all students through the use
of technology and demonstrate that any problem can be
solved with ingenuity and creativity.

II. SYSTEM OVERVIEW CONCEPT
This section describes how the Study Spot Finder works

as a complete system. Study Spot Finder behavior is cyclical,

and this process can be summarized in 3 stages: available,
awaiting, and reserved.

A. Available
This is the initial state of the device after it is first set up

through the admin side of the application, and whenever a new
reservation is about to occur. In this state, the device is
continually checking for an update in the Firebase database
under its unique ID, while having green LEDs on to signal its
availability. It appears as available on the mobile application
for users to select, along with the other devices. Once a device
is selected, a popup containing specific characteristics of the
device appears, along with the option to place a reservation.
These characteristics are set by the admin during the initial
setup.

B. Awaiting
Once a user has selected a suitable spot in the Mobile

Application, it will update that device ID’s status the Firebase
database. This update, once the device has recognized it, will
change the device to awaiting confirmation. The LEDs will
light yellow and the device will begin to accept an input on its
keypad. Meanwhile, on the mobile application, the popup will
update with a randomly generated keycode, along with an
option to release the spot prematurely. Once the user arrives
at the study spot, they must input the keycode on the device in
order to verify that the correct user is confirming. The device
will also have access to the generated keycode, and, after
successfully comparing the code, switches to the Reserved
state.

C. Reserved
Once reserved, the Mobile Application will simply

provide the option to release the reservation, while the device
LEDs light up red and continually check for an update in the
Firebase database under its unique ID. Once the user has
finished with the study spot, they will release the reservation,
which will update the device’s status in the Firebase and show
the spot as available in the app. The device will return to the
Available step once it recognizes this update, and the process
repeats for another user.

III. SYSTEM COMPONENTS
This section briefly describes the individual components

or modules that were either designed or bought to integrate.
Each component is necessary for realizing the capabilities
and functions of Study Spot Finder.

A. Casing
In order to conform with the specifications for a

lightweight, easy to use device, the team decided to create a
3D printed enclosure using ABS plastic. The shape of the
device was chosen to be cylindrical for aesthetic purposes, and
to hold the components properly. The original design had four
stages: the battery casing, the main PCB housing, the clear

LED PCB housing and the push button housing. However, due
to unforeseen circumstances, the team decided to create a
handmade back-up design using PVC tubing to hold the main
PCB, and a clear polypropylene tube to hold the two LEDs.
The push button will be located on top of the PVC, and a cap
will be located below to secure the components.

B. Wi-Fi Module
For the communication between the device and the mobile

application, we needed a wireless communication component.
We decided to use Wi-Fi over Bluetooth, since it had longer
range and a more efficient means to communicate to the
application and its database. Some WI-FI modules discussed
were the CC3100 from Texas Instruments and ESP 8266 from
Espressif. ESP8266 was the ideal Wi-Fi module for this
device due to its low cost and power consumption. This device
was also compatible with the Arduino IDE for programming,
which allowed for faster prototyping and useful APIs
concerning Firebase communication as well as serial
communication to our microcontroller.

C. Microcontroller
Our original choice for the microcontroller was the

MSPEXP430-G2ET due to its popularity, processing power,
and our own experience with it. However, because of the
efficiency of the Arduino IDE, and the overwhelming
documentation concerning Firebase communication with
Arduino, we decided to use the ATMEGA328P chip. This
chip has enough GPIO pins for all our external devices as well
as a 16MHz clock to quickly check for keypad inputs while
simultaneously sending and receiving data packets over serial
communication.

D. LED
The requirements for our LED was that it needed to be able

to notify the user of changes to the status (available, awaiting
confirmation, and reserved). For this we chose to use an RGB
LED, mainly because of its ability to produce multiple colors,
including the colors we needed: green, yellow, and red. In
order to reduce power consumption yet maintain status
awareness, we decided to use 2 RGB LEDs.

E. Supply Voltage & Regulation
For the supply voltage, we decided to move to a 9 Volt

Lithium Battery in order to cover the dropout voltage for our
regulators, to provide a high enough voltage to supply the
devices, and for its large 1200mAh capacity. To provide the
adequate and stable voltage for our microcontroller and Wi-Fi
module, we used two fixed voltage regulators, for 5 Volts and
3.3 Volts. Decoupling capacitors were also included to
stabilize the supply voltage leaving the regulators.

F. Printed Circuit Boards
To accommodate for the size restrictions and LED

placement, we decided to use two separate types of PCBs. The
first is the main PCB, which will house our main components;
the power supply, microcontroller, Wi-Fi module and on/off
switch, as well as connections to our external devices. The
second type of PCB will be LED PCBs, which will house the
components for the functionality of the LED, allowing it to be
compact and separate from the main PCB.

G. Keypad & Pushbutton
In order to complete the reservation confirmation process

and validate the correct user, a keypad and pushbutton were
implemented into the design. We decided to use a 4-digit

keypad to produce 255 combinations to maintain a secure
confirmation while also making the process as easy as
possible for users. The pushbutton acts as the ‘send’. We
decided to use a large, 10 cm pushbutton to make it noticeable
for users.

H. Mobile Application
For the mobile application, we needed a way to provide

the users with a seamless connection between them and the
hardware device. This applies to both admins, the user who
can add devices/study spots and make changes to it, and
students, the user who can reserve a study spot. To make this
possible, we approached this connection in two different
ways:

a) Front-End: For this part, we needed a system that
would handle the user interface in an untroubled way. We
looked at different technologies to build the front-end on.
These are Android, iOS, and React Native. Android uses Java
as their primary programming language, which is a language
we are mostly comfortable with. For the next techonolgy, iOS
uses Swift as their primary programming language.
Unfortunately, we were not as familiar with this language at
all, making it a big learning curve for us. For our last
technology, React Native is a framework that uses JavaScript
as their primary programming language. We are more
familiar with this language since we have used it previously
in other web development projects. In addittion, iOS and
Android are native applications, while React Native is
considered a cross-platform application. This is an important
key decision because we want to be able to launch this
application to multiple mobile devices without having the
limitation to just one operating system. In the end, React
Native was chosen to be the framework that handles our
Front-End. This decision was made based on
updates/maintenance, cost, support, development, and team
knowledge.

b) Back-End: In order to use the database and make it
work with our application and hardware device, we needed to
make several API calls. With the API call, the information is
sent and processed back to the user. There are a few
technologies we considered for this such as PHP, Node.js,
and Python. PHP is simple to get started with and not much
knowledge is needed in order to use it for the project.
However, there are scalability issues and it is limited by
memory to the number of connections it can support. For
Python, the syntax is simple to understand and to use. It also
supports asynchronous coding. Unfortunately, Python is not
a popular language for mobile app development; therefore,
there is less support for this. Lastly, Node.js is great for
building RESTful APIs for NoSQL database support. The
possible biggest drawback of Node.js is its inability to
process CPU bound tasks. Node.js is not generally
recommended for heavy computation; however, this would
not affect us as much since we are not using heavy
computation in our project. In the end, Node.js was chosen to
support our Back-End. This decision was made based on
mobile compatibility, performance, and IoT compability.

I. Firebase
Google Firebase was chosen since it was very simple to

implement and low cost. There is a built-in authentication
system and supports Robust APIs for JavaScript. It also
provides us with a Realtime Database, which is what we are
using for our project. In the end between AWS and Azure,
Firebase was chosen to support our database. This decision
was made based on cost, ease of use, performance, and
updates and maintenance support.

IV. HARDWARE DESIGN
For the hardware design we took into account constraints

related to power efficiency, size, ease of use, and response
time. After creating a successful initial prototype, we created
a fully integrated Hardware design, described in detail below.

A. Hardware Block Diagram
The hardware design block diagram in Figure 1 describes

the overall flow and critical components used in this device. It
also demonstrates how components are distributed.

Fig. 2. Hardware Block Diagram

The 9-Volt Lithium Ion battery is attached to the PCB
through JST 2-Pin connectors. It enters voltage regulation
and then passes to our two main components: the
ATMega328P microcontroller and the ESP8266 Wi-Fi
module. The Microcontroller and Wi-Fi module
communicate with each other, and the rest of the external
components are controlled by the ATMega chip. Below, we
will discuss each component in more detail.

B. Main PCB Design
1) Power Regulation: As mentioned previously, two

voltage regulators were used in the main PCB to supply the
microcontroller and the ESP Wi-Fi Module. These regulators
were chosen due to their low dropout voltage (500 mV). They
are also extremely small and have an ultra-low quiescent
current of ~10uA. We decided to run the ATMega328 at 5V
in order to take advantage of its 16 MHz processing
capabilities. The ESP Module has many curent spikes during
normal operation, especially when transmitting and receiving
information through Wi-Fi, so we included decoupling
capacitors of various capacitances to handle any noise/
voltage spikes, as shown in Figure 2.

2) ESP8266-01 Wi-Fi Module: The ESP Wi-Fi Module,
as shown on Figure 3, has a high enable pin, which requires
a 10k pullup resistor. Since this module is a populated ECA,
we have attached the traces to female headers on the PCB
which the ESP will mate to. This allows for easy removal and
replacement of the module. As for communication to the
module, we are using UART serial communication to the
ATMega328P chip through the TX and RX lines available on
the module. This ECA comes fully equipped with a internal
2.4 GHz antenna, so no external antenna is required.

Fig. 3. ESP 8266 Hardware Block Diagram

3) ATMega328P Microcontroller: The microcontroller is
located on an IC holder for easy removal and replacement if
necessary. However, we have also placed a set of 3 female
headers that can be used to upload code onto the
microcontroller without removing it from the PCB, for quick
debugging. We have also attached a 16MHz crystal for faster
processing. The ATMega328P contains 6 PWM channels, 4
of which we are using for LED voltage control, and 2 of
which are used for serial communication. We are not using
the ADC on the chip for energy consumption purposes.

Fig. 4. ATMega328P Microcontroller Schematic

Fig. 1. Power Regulation Schematic

4) Final PCB Design: The final PCB was designed in
Eagle and contains external connections to the keypad,
pushbutton, on/off switch, and LED PCBs.

Fig. 5. Final PCB Design

C. LED PCB Design
The LED PCB was created to be separate from the main

PCB for it to be placed in the see-through area. The PCB only
consists of the necessary components for the functionality of
the LED: 2 resistors and header pins to mate to the main PCB.
We used the following formula to find the value of the
resistors:

20 mA = [5V(Supply)-1.8V(Drop)] / x Ω

x Ω = 3.2V / 20 mA

x Ω = 180 Ω

Eqn. 1 LED Resistance Calculations

The closest commercially available resistor was 195
Ohms. The board was designed to be as small as possible.
Two of these LED boards are used in the final design, and are
located inside of the clear tube, allowing the LED light to
shine through from inside the enclosure.

Fig. 6. LED PCB Schematic

Figure 6 shows the PCB schematic. The Blue pin is left
floating because it is not used in this project. The necessary
colors are green, red, and yellow. yellow was created by
mixing green and red together. The final dimensions of this
PBC are 3.7 cm by 2.8 cm.

D. Serial Communication:
Serial communication was used for the transmission of

data between the microcontroller and the ESP8266. In order
to send multiple values of information at once, a data packet
was created for both the ATMega chip and the ESP Module.
Table 1 demonstrates the data packet for each device.

Device Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Arduino => ESP Header Keycode
High Byte

Keycode
Low Byte Status Footer

ESP => Arduino Header Valid Status Footer

Table 1. Data Packet for UART Communication

The keycode’s maximum value available, using a 4-digit
keypad, would be 4444, which is 13 bits, too much to fit into
one Byte of transferred data. To resolve this, the integer
containing the 4-digit keycode was sent using the highByte
and lowByte command in the Arduino IDE, which divided the
integer into two parts. Once received by the ESP Wi-Fi
module, the high byte was shifted by 8 and an OR operation
was performed with the low byte to obtain the full Keycode.
The header and footer were also included in the data packet
to be able to properly decode the packets and organize the
information.

E. Keypad and Pushbutton
For the confirmation and authentication process, we used

a 4-digit keypad and a large 10cm pushbutton. Both
components were externally attached to the device and pull
its respective GPIO pin to ground when pressed. The keypad
presses are only registered when the device is in the
“Awaiting” state, through continuous polling. This allows the
device to also perform other actions such as checking for
updates in the database in the case that the user prematurely
releases the reservation. Once 4 digits have been received, the
keypad ceases to be polled and the button is polled instead.
The press of the push button sends the code to the Wi-Fi
module which performs code verification and proceeds
accordingly.

F. Hardware Assembly
The enclosure was assembled as 3 separate sections, with the
pushbutton and keypad on the top part, the LED PCBs in the
middle, and the remaining components on the bottom section.
The middle section is covered in reflective tape to increase
the effectiveness of the LEDs. A tube covered in reflective
tape runs through the middle section, allowing the wires from
the top part to reach the PCB without being seen. A mockup
can be seen below in figure 7.

Fig. 7. Hardware Design Mockup

V. SOFTWARE DESIGN
For the software of our project, we took into account

efficiency, user experience, and seamless connection
technology. In the end, we built a successful mobile
application for both types of users: students and admins. The
software design is described in detail below.

A. Use Case Diagram
The following diagram in Figure 8 represents the use case

diagram for both users: students and admins. This figure
allows us to explain how the user will be interacting with the
device. Since our main source of information is our database,
the user never has to interact directly with the hardware
device, but with the database itself.

Fig. 8. Use Case Diagram for User Student and Admin

The user student is able to login into the application, and
if they have never used it before, they are able to sign up with
their university emails. “Verify password” will be a state that
will always happen every time the user logins into the
application. A display login error message will be brought
back to the user if the password is not correct.

For the study spots, the user student is able to search,
reserve, and modify study spots. Whenever the user student
reserves a spot, the “attempts to reserve” state will be
automatically applied. Lastly, the user is able to modify a
study spot. That is, release the study spot for someone else to
use or cancel their reservation. For the admin side of the
application, they are able to add new devices/study spots and
modify study spots’ information. IT officials from the
university would be ideally the admins for this application.

B. User Student Interaction
The user student is our client for this whole system. They

are able to search, reserve, and modify study spots all in one
single place. Information will be provided to them before they
make a decision, and we make the process simple for them to
interact with. Figure 9a and figure 9b demonstrate this
process.

Fig. 9a. Study Spots List UX Design

Fig. 9b. Single Study Spot ready to be reserved UX Design

In Figure 9a, the user student is provided with a small
amount of information on the study spots/devices. The
following fields are currently displayed: name of the study
spot, building name, floor, and small icons. These icons
represent whether the study spot has outlets, a desktop
computer available, or if the spot is for an individual or for a
group. We believe this is the right information to be shown at
first since the user student can make a decision based on these
factors.

In Figure 9b, the user student reaches the second state of
the reservation process. This modal shows more information
on the device they have selected. We also have a new
important field, the key code. This key code is currently set to
0. When the user presses the reserve button, this key code will
now have a new random generated 4-digit code value from
one to four. This is the key code that they will have to enter in
the hardware device keypad in order to finish completing their
reservation. They also have the option to release their study
spot in case they have made a mistake or do not need the spot
anymore.

C. Admin Interaction
 The admin will have their own application system when
interacting with the hardware device. When a new hardware
device is manufactured, this device will have their own unique
ID. The admin will have to register/add this new ID along with
the other information for the device. The following figures 10a
and 10b demonstrate this process.

 In figure 10a, the admin will have the list of devices
currently already set up. The fields that are currently displayed
are: name of device, location, and floor number. We believe
this is the necessary information to be shown to the admin
before they decide to modify a study spot. Whenever they
want to add a new device, they can simply press the add button
on the bottom right, and that action will take them to the next
screen which is figure 10b.

Fig. 10a: UX Design for the List of Devices in the admin side

Fig. 10b. UX Design for the registration of a new device

In figure 10b, the admin is able to register/add a new
device. They will need to provide information on the study
spot. First, they will need to write the name of the device.
This name can be placed on the hardware device as a label,
and users will be able to find the study spot this way. The
device ID will be the unique ID that identifies each device.
The hardware device will need this field in order to make the
device functional. The rest of the fields are general
information of the device such as where it will be located,
spot type, capacity, number of outlets, and if there is a
desktop available.

D. Reserving a Study Spot
After the user logins into the mobile application, the user

is greeted, as seen in Figure 9a. This figure shows the entire
overview of the study spot finders - with their statuses,
locations, and the type of study spots (outlets, tables,
computers). When a user is able to see a spot with available,
as marked with a green dot, only then the user will be able to
reserve a spot. Once they press on the spot that reserves their
status they are able to view the entire details of that spot –
location, type of study spot (group or individual), capacity,
number of outlets, and the key code, which will be used to type
into the study spot device. When the user is ready to reserve a
spot, they will press reserve, which will randomly generate a
4-digit code, each digit being between 1-4, and the device will
turn yellow. An alert modal will pop up informing the user
that the reservation is pending and must enter the code in the
specified study spot. When the user types in the code on the
study spot device, the device will turn red, meaning that the
spot has been reserved. During the pending reservation phase,
is the option to cancel your reservation, by tapping the release
spot button, which will reset the status to available and the
study spot device will turn back green again.

E. Database and API
The firebase real-time database holds all the study spots

and users. The study spots have been registered by the admin
and the users have been registered by the users themselves
when they sign up for an account in our application.

In Figure 11, we present an entity relationship diagram for
the application overall. In this figure we have users as our
main part of the application. These users will have a username,
which is the email they signed up with at the beginning, and a
password of their choice. These passwords will be protected
in the database thanks to the built-in authentication system
provided by Firebase.

Admins and students are users of the application. That
is, they inherit all the attributes of users. For this case, many
admins are able to set up many devices. In addition, many
students are able to reserve study spots, but only one study
spot can be reserved per student. Students will have their
student ID, first name, last name, school email, phone
number, and university name as part of their profiles.

Fig. 11. Entity Relationship Diagram for the application

In Figure 12, we continue the entity relationship diagram
from Figure 11. In this figure, we describe the study spots.
One or many study spots can have properties such as name,
location, spot type, capacity of study spot, number of outlets,
and desktop computer available. These study spots will also
have a unique ID value which will identify each study spot in
the database. These ID will be used by the hardware device
and mobile application to modify study spots.

Figure 12: Continued Entity Relationship Diagram for the application

focused on study spots

VI. HARDWARE AND SOFTWARE INTEGRATION
Figure 13 demonstrates the hardware and software

integration during the reservation process. The hardware and
software communicate updates through the database, using a
“status” field. Status first start as 1, which means the device is
available and the light on the device is green. Then, when the
user attempts to reserve a study spot, the status field will
change to 2, which means the device is now awaiting
confirmation, and the light on the device will be bright yellow.
In addition, the code will be generated here for verification
purposes. This code will be updated in the database for the
application and hardware device to use. Once the user goes to
the study spot location, they use the keypad on the device to
enter the code. Once this verification is completed by the
hardware device, the status is now changed to 3 and the light
will be now red, which means the spot has been confirmed and
reserved.

Fig. 13. Software and Hardware Integration

Whenever we want to send a value to the Firebase from
the Microcontroller, we send a data packet to the ESP
Module. Using functions from the Firebase-Arduino library,
the ESP Module sets the corresponding value in the firebase,
which updates in real-time for the mobile application.

VII. CONCLUSION
While the study spot finder project was overall successful,

we faced many changes and challenges during the last 4
months. In the beginning, our team did extensive research
about new software technologies as well as hardware
components, and the most efficient way to integrate them.
Then, we decided what features needed to be prioritized in
order to complete the project within the time constraint. After
deciding on our components and goals, we set out to design
our device.

There have been certain challenges that the team
encountered during the prototyping stage of this project. On
the hardware side, the biggest hurdle was integrating the Wi-
Fi module, in terms of communication, voltage stabilization,
and flashing software. We also experienced some trouble with
lead times on products that were ordered, as well as PCB
design. On the software side, we experienced the most
difficulties in combining multiple software frameworks and
working with the React Native framework in conjunction with
Firebase databases. Some other software issues for this project
were with debug errors- the use of Google was a major help in
this project. Emulation of this app was a bit tricky as one of us
had Windows, and the other had MacOS. We had plenty of

flexibility when it came to developing, thanks to the React
Native Framework, but when it came to testing, we used Expo
for the majority of testing in order to make sure our application
was working correctly. For integration between Firebase and
React Native, we had to implement APIs, which involved
reading the Firebase Documentation.

While this group is formed by three computer engineers,
the hardware team and software team has been divided into
two equal teams where programming skills are required in
both sides. By the end of this project, the team have
developed new skills in both software and hardware levels.
For the hardware aspect, the team will have gained
programming skills, hardware design involving power
supply, hardware components integration, PCB schematics,
design and assembly. On the software aspect, out team has
gained experience in multiple programming languages,
database environments, and libraries, along with other
software development skills. Furthermore, the entire team has
gained managerial skills and teamwork.

VIII. THE TEAM

Perla Del Castillo is a senior in
Computer Engineering at the
University of Central Florida. She has
worked on the back end and admin
portal for this project. After
graduation, she will be joining Deloitte
as a Solutions Analyst and work
towards getting her MBA.

Maria Ines Herbas Gutierrez is a
senior Computer and Industrial
Engineering major at the University of
Central Florida. She worked on the
hardware design of the project. After
graduation, she will be working at
ASML as a Production Engineer
using both majors.

Andrew Kwong is a senior Computer
Engineer at the University of Central
Florida. He has worked on the front-
end mobile development of the project.
After graduation he will be investing in
the stock market and deciding between
multiple job offers.

Darwin Motato is a senior in Electrical
Engineering at the University of
Central Florida. He has worked on the
hardware design and the enclosure for
this project. After graduation, he will
begin a full-time position as a Test
Engineer at Lockheed Martin.

ACKNOWLEDGMENT
The authors wish to acknowledge and thank Dr. Lei Wei

and Dr. Samuel Richie for their constant support over the
courses of Senior Design I/II.

REFERENCES
[1] “The 16 Most Important Pros and Cons of Using Python for Web

Development.” Django Stars Blog, 17 Sept. 2019,
djangostars.com/blog/python-web-development/.

[2] “5V 40 LEDs Digital WS2812B Programmable Pixel LED Light
Ring.” Kutop International Limited, kutop.com/5v-40-leds-digital-
ws2812b-programmable-pixel-led-light-ring.html.

[3] “ECFR - Code of Federal Regulations.” Electronic Code of Federal
Regulations (ECFR), www.ecfr.gov.

[4] Gamma, Smart. “What Are the Pros and Cons of Using PHP?”
Medium, Medium, 1 June 2016, medium.com/@smartgamma/what-
are-the-pros-and-cons-of-using-php-490553ed8ff2.

[5] “The Good and the Bad of Swift Programming Language.” AltexSoft,
www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-swift-
programming-language/.

[6] “The Good and the Bad of .NET Framework Programming.” AltexSoft,
28 June 2019, www.altexsoft.com/blog/engineering/the-good-and-the-
bad-of-net-framework-programming/.

[7] “IEEE Standards.” IEEE, www.ieee.org/standards/index.html.
[8] “LED 101: Identifying Different Types of LEDs.” Electronic Products,

19Apr.2018,www.electronicproducts.com/Optoelectronics/LEDs/LE
D_101_Identifying_different_types_of_LEDs.aspx.

[9] “LED STRIP LIGHTS.” Everything You Need to Know About LED
Strip Lights | Waveform Lighting, www.waveformlighting.com/led-
strip-lights

[10] Marrakchi, David. “Top 5 PCB Design Guidelines Every PCB
Designer Needs to Know.” Altium Resources, 30 Sept. 2019,
resources.altium.com/pcb-design-blog/top-pcb-design-guidelines-
every-pcb-designer-needs-to-know.

[11] “Native vs. Cross-Platform Apps: The Startup Dilemma.” Skelia, 25
Sept. 2019, skelia.com/articles/the-startup-dilemma-native-vs-cross-
platform-apps/.

[12] Smith, W.A. “ESP8266 Testing.” Starting Electronics, Electronics for
Beginners, Hobbyists and Beyond,
startingelectronics.org/articles/ESP8266-testing

